INGOR
Loading...
Searching...
No Matches
BNRC Score Function

BNRC is a network score based on B-spline nonparametric regression model. The score is developed by Prof. Seiya Imoto at University of Tokyo. For more details, see their paper: Imoto et al. (2002) Pac. Symp. Biocomput. 7, 175-186.

Parameters

M=n

The number of B-splines for nonparametric regression. By default, n=20.

max_parents=n
mp=n

Maximum parents

prop=n

Property output type. This changes properties to be stored in edges and nodes after the estimation.
0: standard.
1: less information (simple) for the contitous or discrete only variable data set.

hyper_bg=x
hb=x
hb value for the hyperparameter range. The hyperparameter β is determined by the grid search. The grid search starts from β = 10hb and then decreases the value such as β = 10hb − (i × hi ), where i = 1, 2, ...., hn. (default: x = 2.0)
hyper_inc=x
hi=x
hi value for hyperparameter range. See explanation of hyper_bg. (default: x = 0.4)
hyper_n=n
hn=n
hn value for hyperparameter range. See explanation of hyper_bg. (default: n = 21)
linear
Linear mode. This is short for "hb=2.0,hi=1.0,hn=2".
max_loops=n
The maximum number of loops for parameter estimation by the back fitting algorithm. (default: n = 100)
stop
If specified, the algorithm stops if the parameter estimation is not converged.
verbose=n
v=n
Verbose level. By defalt, n=0.

The following keys are used internally.

xl
DoubleArray instance that defines the minimum (left-most) values of the value ranges for modeling with B-splines.
xr
DoubleArray instance that defines the maximum (right-most) values of the value ranges for modeling with B-splines.

Network Scores | INGOR Manual